A dimorphic description of the Grothendieck-Teichmüller Lie algebra

Leila Schneps

Higher structures emerging from renormalisation Virtual Vienna October 12-16, 2020

Outline

Part I. Multiple zeta values and the Drinfeld associator

Part II. The double shuffle Lie algebra \mathfrak{ds} and the Grothendieck-Teichmüller Lie algebra \mathfrak{grt}

Part III. A dimorphic re-definition of grt

Part IV. Normal form of 5-strand braids

Part I: Multizeta values and the Drinfeld associator

For each sequence (k_1, \ldots, k_r) of strictly positive integers, $k_1 \ge 2$, the **multiple zeta value** is defined by the convergent series

$$\zeta(k_1, \dots, k_r) = \sum_{n_1 > \dots > n_r > 0} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}}.$$

These real numbers have been studied since Euler (1775).

They form a \mathbb{Q} -algebra, the *multizeta algebra* \mathcal{Z} .

Two multiplications of multizeta values

1. Shuffle multiplication

Straightforward integration shows that

$$\zeta(k_1, \dots, k_r) = (-1)^r \int_0^1 \int_0^{t_1} \dots \int_0^{t_{n-1}} \frac{dt_n}{t_n - \epsilon_n} \dots \frac{dt_2}{t_2 - \epsilon_2} \frac{dt_1}{t_1 - \epsilon_1}$$

where

$$(\epsilon_1, \dots, \epsilon_n) = (\underbrace{0, \dots, 0}_{k_1 - 1}, 1, \underbrace{0, \dots, 0}_{k_2 - 1}, 1, \dots, \underbrace{0, \dots, 0}_{k_r - 1}, 1).$$

The product of two simplices is a union of simplices, giving an expression for the product of two multizeta values as a sum of multizeta values. This is the **shuffle product**.

Example. We have

$$\zeta(2) = \int_0^1 \int_0^{t_1} \frac{dt_2}{1 - t_2} \frac{dt_1}{t_1}$$
$$\zeta(2, 2) = \int_0^1 \int_0^{t_1} \int_0^{t_2} \int_0^{t_3} \frac{dt_4}{1 - t_4} \frac{dt_3}{t_3} \frac{dt_2}{1 - t_2} \frac{dt_1}{t_1}$$
$$\zeta(3, 1) = \int_0^1 \int_0^{t_1} \int_0^{t_2} \int_0^{t_3} \frac{dt_4}{1 - t_4} \frac{dt_3}{1 - t_3} \frac{dt_2}{t_2} \frac{dt_1}{t_1}$$

and

$$\zeta(2)^2 = 2\,\zeta(2,2) + 4\,\zeta(3,1).$$

Convergent words in x, y

A convergent word $w \in \mathbb{Q}\langle x, y \rangle$ is a word w = xvy.

The reason for this notation is that it gives a bijection

{tuples with
$$k_1 \ge 2$$
} \leftrightarrow {convergent words}
 $(k_1, \dots, k_r) \leftrightarrow x^{k_1 - 1} y \cdots x^{k_r - 1} y.$

Definition. For two monomials $u, v \in \mathbb{Q}\langle x, y \rangle$, the **shuffle product** sh(u, v) is the set or formal sum of permutations of the letters of u and v where the letters of each word remain ordered.

Example. sh(y, xy) = yxy + 2xyy.

We use the x, y-notation to define $\zeta(w)$ for any convergent word $w = x^{k_1-1}y \cdot x^{k_r-1}y$ by setting

$$\zeta(x^{k_1-1}y\cdots x^{k_r-1}y):=\zeta(k_1,\ldots,k_r).$$

We then extend the definition of $\zeta(w)$ to all words w by writing $w = y^a u x^b$ with u convergent and setting

$$\zeta(w) := \sum_{r=0}^{a} \sum_{s=0}^{b} (-1)^{r+s} \zeta \left(sh(y^r, y^{a-r} u x^{b-s}, x^s) \right).$$

Theorem. For all words u, v in x, y, we have

$$\zeta(u)\zeta(v) = \zeta\bigl(sh(u,v)\bigr).$$

In particular, this multiplication law shows that the \mathbb{Q} -vector space \mathcal{Z} has a \mathbb{Q} -algebra structure.

2. Stuffle multiplication

The product of two series over ordered indices can be expressed as a sum of series over ordered indices. This is the **stuffle product** of multizeta values.

Example. We have

$$\zeta(2)^{2} = \left(\sum_{n>0} \frac{1}{n^{2}}\right) \left(\sum_{m>0} \frac{1}{m^{2}}\right)$$
$$= \sum_{n>m>0} \frac{1}{n^{2}m^{2}} + \sum_{m>n>0} \frac{1}{n^{2}m^{2}} + \sum_{n=m>0} \frac{1}{n^{4}}$$
$$= 2\zeta(2,2) + \zeta(4).$$

The x, y notation for stuffle

We write

$$st((k_1,\ldots,k_r),(l_1,\ldots,l_s))$$

for the formal sum of sequences that come from this way of calculating the product of $\zeta(k_1, \ldots, k_r)\zeta(l_1, \ldots, l_s)$. For example

$$st((2), (3)) = (2, 3) + (3, 2) + (5).$$

We translate this operation on sequences over to convergent words.

Letting $y_i = x^{i-1}y$, we write a convergent word $w = x^{k_1-1}y \cdots x^{k_r-1}y$ as $w = y_{k_1} \cdots y_{k_r}$, and define the *stuffle product* of convergent words st(u, v)as above. For example

$$st(xy, x^2y) = st(y_2, y_3) = y_2y_3 + y_3y_2 + y_5.$$

Thus

$$\zeta(2)\zeta(3) = \zeta(2,3) + \zeta(3,2) + \zeta(5).$$

The Drinfeld associator

Definition. The *Drinfeld associator* is the power series given by

$$\Phi_{KZ}(x,y) = 1 + \sum_{w \in \mathbb{Q}\langle x,y \rangle} (-1)^{d_w} \zeta(w) w$$

where d_w is the number of y's in the word w. Let Φ_{KZ}^* denote the product

$$\exp\left(\sum_{n\geq 2}\frac{(-1)^{n-1}}{n}\zeta(n)y_1^n\right)\cdot\pi_y(\Phi_{KZ}),$$

where π_y forgets all words ending in x, and rewrites words ending in y in the letters y_i .

Theorem. For all words w in the letters y_i , set $\zeta^*(w) = (\Phi_{KZ}^* | w)$. Then (i) For all convergent words w, we have $\zeta^*(w) = \zeta(w)$.

(ii) For every pair of words u, v in the y_i , we have

$$\zeta^*(u)\zeta^*(v) = \zeta^*\bigl(st(u,v)\bigr).$$

Since non-convergent words in the y_i are exactly those starting with $y = y_1$, assigning a value $\zeta^*(w)$ to these words exactly means giving a regularized value to the divergent quantities $\zeta(1, k_2, \ldots, k_r)$.

The shuffle and stuffle relations between multizetas can be encoded directly as properties of the Drinfeld associator.

Shuffle relations: The shuffle relations satisfied by the $\zeta(w)$ are encoded in the property

$$\Delta(\Phi_{KZ}) = \Phi_{KZ} \otimes \Phi_{KZ},\tag{1}$$

where $\Delta(x) = x \otimes 1 + 1 \otimes x$ and $\Delta(y) = y \otimes 1 + 1 \otimes y$ is the standard coproduct on the Hopf algebra $\mathbb{Q}\langle\langle x, y \rangle\rangle$.

Stuffle relations: The stuffle relations satisfied by the $\zeta^*(w)$ are encoded in the condition

$$\Delta_*(\Phi_*) = \Phi_* \otimes \Phi_*, \tag{2}$$

where Δ_* be the coproduct on $\mathbb{Q}\langle\langle y_1, y_2, \ldots\rangle\rangle$ defined by

$$\Delta_*(y_i) = \sum_{k+l=i} y_k \otimes y_l.$$

Part II

The Grothendieck-Teichmüller and double shuffle Lie algebras

Definition of the *n***-strand braid Lie algebra.** Let $\text{Lie } P_n$ be the Lie algebra given by:

Generators: $x_{ij}, 1 \le i, j \le n$ with $x_{ij} = x_{ji}, x_{ii} = 0$ Relations: $[x_{ij}, x_{ij} + x_{ik} + x_{jk}] = 0$ for sets $|\{i, j, k\}| = 3$ $\sum_{j \ne i} x_{ij} = 0$ $[x_{ij}, x_{kl}] = 0$ if $\{i, j\} \cap \{k, l\} = \emptyset$.

In particular, Lie P_4 is free on x_{12}, x_{23} and Lie P_5 can be generated by $x_{12}, x_{23}, x_{34}, x_{45}, x_{51}$ or by $x_{12}, x_{23}, x_{14}, x_{24}, x_{34}$.

Theorem. [Drinfel'd] *The Drinfeld associator also satisfies the* associator relations

(I)
$$\Phi_{KZ}(x,y)\Phi_{KZ}(y,x) = 1$$

(II)
$$e^{\pi i x} \Phi_{KZ}(y, x) e^{\pi i y} \Phi_{KZ}(z, y) e^{i\pi z} \Phi_{KZ}(x, z) = 1$$
 with $x + y + z = 0$,

(III) The 5-cycle relation

 $\Phi_{KZ}(x_{12}, x_{23})\Phi_{KZ}(x_{34}, x_{45})\Phi_{KZ}(x_{51}, x_{12})\Phi_{KZ}(x_{23}, x_{34})\Phi_{KZ}(x_{45}, x_{51}) = 1,$ where the x_{ij} generate Lie P_5 .

Lie algebras associated to Φ_{KZ}

Definition. For any ring R, let DS(R) denote the set of *double shuffle* power series in $R\langle\langle x, y\rangle\rangle$ that are group-like, have no linear term and satisfy the double shuffle relations.

Let $DS_0(R)$ denote the subset (pro-unipotent group) of those having no quadratic terms. Then $\Phi_{KZ} \in DS(\mathcal{Z})$, and if $\overline{\Phi}_{KZ}$ denotes the power series Φ_{KZ} with coefficients reduced modulo $\zeta(2)$ then

$$\overline{\Phi}_{KZ} \in DS_0(\mathcal{Z}/\langle \zeta(2) \rangle).$$

Definition. For any ring R, an *associator* is a group-like power series $\Phi(x, y) \in R\langle\langle x, y \rangle\rangle$ with no linear term which satisfies the associator relations (I), (II), (III) with $i\pi$ replaced by $\mu/2$ for some $\mu \in R$.

Let $GRT_0(R)$ denote the set (pro-unipotent group) of associators with no quadratic term. The power series Φ_{KZ} is an associator and for the reduced power series we have

 $\overline{\Phi_{KZ}} \in GRT_0(\mathcal{Z}/\langle \zeta(2) \rangle.$

Definition. Let $\mathfrak{ds} = \mathfrak{ds}(\mathbb{Q})$ denote the Lie algebra consisting of polynomials $f(x, y) \in \mathbb{Q}\langle x, y \rangle$ such that

- (i) f is of degree ≥ 3 ,
- (ii) f is Lie-like for Δ , i.e. $f \in \text{Lie}[x, y]$, and

(iii) f^* is Lie-like for Δ^* , where f^* is obtained from f by the formula

$$f^* = \pi_y(f) + \sum_{n \ge 2} \frac{(-1)^{n-1}}{n} y_1^n.$$

Definition. Let $\mathfrak{grt} = \mathfrak{grt}(\mathbb{Q})$ denote the Lie algebra consisting of polynomials $f(x, y) \in \mathbb{Q}\langle x, y \rangle$ such that

(i) f is of degree ≥ 3 , (ii) $f \in \text{Lie}[x, y]$ (iii) $f(x_{12}, x_{23}) + f(x_{23}, x_{34}) + f(x_{34}, x_{45}) + f(x_{45}, x_{51}) + f(x_{51}, x_{12}) = 0$, where the x_{ij} generate Lie P_5 .

Remark. Clearly \mathfrak{ds} is the Lie version of DS_0 . By a theorem of H. Furusho, these properties automatically imply that if x + y + z = 0 then

$$f(x, y) + f(y, x) = f(x, y) + f(y, z) + f(z, x) = 0.$$

So this definition really is the graded Lie algebra associated to GRT_0 .

The Lie bracket: Every $f \in \text{Lie}[x, y]$ yields a derivation D_f of Lie[x, y] defined by

$$D_f(x) = 0,$$
 $D_f(y) = [y, f(x, y)].$

We write $\text{Der}^* \text{Lie}[x, y]$ for the derivations of this type. We can put a different Lie bracket on the vector space Lie[x, y], called the Poisson or Ihara bracket via

$$\{f,g\} = [f,g] + D_f(g) - D_g(f),$$

which corresponds to bracketing derivations:

$$[D_f, D_g] = D_{\{f,g\}}.$$

- * Ihara: \mathfrak{grt} is a graded Lie algebra under $\{,\}$ (so GRT_0 is a pro-unipotent group).
- * Racinet, Ecalle: \mathfrak{ds} is a graded Lie algebra under $\{,\}$ (so DS_0 is a prounipotent group).

Theorem. (Furusho) There is an injection of Lie algebras

$$\mathfrak{grt} \hookrightarrow \mathfrak{ds}$$

 $f(x,y) \mapsto f(x,-y).$

Part III. A dimorphic definition of grt

Theorem. Let $\text{Lie}_n P_5$ be the graded part of $\text{Lie} P_5$ of degree n, and let K_4 denote the kernel of the morphism that "erases the 4th strand". Then

(i) $K_4 := \langle x_{14}, x_{24}, x_{34}, x_{45} \rangle \simeq \langle x_{24}, x_{34}, x_{45} \rangle$ is a free Lie algebra on 3 generators (since $x_{14} + x_{24} + x_{34} + x_{45} = 0$).

(ii) We have the semi-direct product decomposition

Lie
$$P_5 \simeq \langle x_{12}, x_{23} \rangle \rtimes K_4.$$

(iii) For fixed $n \geq 1$, we have the direct sum decomposition

$$\operatorname{Lie}_n P_5 \simeq \langle x_{12}, x_{23} \rangle_n \oplus (K_4)_n.$$

This theorem implies that if $f \in \text{Lie}_n P_5$, then f can be written uniquely as

$$f = f_0(x_{12}, x_{23}) + F$$

where $F \in K_4$. We call F the normalization of f with respect to the 4th strand.

We want to consider the normalization of elements of Lie P_5 of the form $f(x_{12}, x_{51})$ where $f(x, y) \in \text{Lie}[x, y]$.

We use the two following facts:

- (1) The relation $x_{51} = x_{23} + x_{24} + x_{34}$ in Lie P_5
- (2) The fact that if $a, b, c \in \text{Lie } P_5$ and [a, c] = [b, c] = 0, then

$$f(a, b+c) = f(a, b).$$

By (1), we have

 $f(x_{12}, x_{51}) \equiv f(x_{12}, x_{23}) \mod K_4.$

Therefore for $f(x_{12}, x_{51})$, we have $f_0(x_{12}, x_{23}) = f(x_{12}, x_{23})$, so the normal form of $f(x_{12}, x_{51})$ in Lie P_5 is

$$f(x_{12}, x_{51}) = f(x_{12}, x_{23}) + F$$

with $F \in K_4$.

Recall that an element $f\in\mathfrak{grt}$ is an $f\in\mathrm{Lie}[x,y]$ that satisfies the pentagon relation

$$f(x_{51}, x_{12}) + f(x_{12}, x_{23}) + f(x_{23}, x_{34}) + f(x_{34}, x_{45}) + f(x_{45}, x_{51}) = 0.$$

Since it also satisfies f(x, y) + f(y, x) = 0, we can write this as

$$f(x_{12}, x_{51}) = f(x_{12}, x_{23}) + f(x_{23}, x_{34}) + f(x_{34}, x_{45}) + f(x_{45}, x_{51})$$

= $f(x_{12}, x_{23}) + f(x_{23} - c, x_{34}) + f(x_{34}, x_{45}) + f(x_{45}, x_{23} + x_{24} + x_{34})$
= $f(x_{12}, x_{23}) + f(-x_{24} - x_{34}, x_{34}) + f(x_{34}, x_{45}) + f(x_{45}, x_{24} + x_{34})$

where $c = x_{23} + x_{24} + x_{34}$ commutes with x_{23} and x_{34} .

This is nothing other than the normalization of $f(x_{12}, x_{51})$ with respect to the 4th strand.

So an equivalent definition of \mathfrak{grt} is the space of $f \in \operatorname{Lie}[x, y]$ such that the normalization F of $f(x_{12}, x_{51})$ is given by

$$F = f(-x_{24} - x_{34}, x_{34}) + f(x_{34}, x_{45}) + f(x_{45}, x_{24} + x_{34}).$$

 Set

$$\begin{cases} x := x_{45} \\ y := x_{24} + x_{34} \\ z := x_{34}, \end{cases}$$

and write $K_4 = \langle x, y, z \rangle$. Then this re-definition of grt can be expressed as follows: the space of $f \in \text{Lie}[x, y]$ such that the normalization F of $f(x_{12}, x_{51})$ is of the form

$$F(x, y, z) = f(-y, z) + f(z, x) + f(x, y).$$

Lemma. Let $f \in \text{Lie}[x, y]$ and let F be the normalization of $f(x_{12}, x_{51}) \in \text{Lie} P_5$. Then

$$\begin{cases} F(x, y, 0) = f(x, y) \\ F(x, 0, z) = f(z, x) \\ F(0, y, z) = f(-y, z). \end{cases}$$

So the re-definition of \mathfrak{grt} can be expressed as follows: the space of $f \in \operatorname{Lie}[x, y]$ whose normalization F has no monomials in all three variables, i.e. satisfies

$$F(x, y, z) = F(x, y, 0) + F(x, 0, z) + F(0, y, z).$$

The coefficients of F are all linear combinations of the coefficients of f. Therefore we have:

Dimorphic definition of grt: the space of polynomials $f \in \mathbb{Q}\langle x, y \rangle$ whose coefficients satisfy two families of linear relations:

- (i) the shuffle relations (so $f \in \text{Lie}[x, y]$),
- (ii) the relations (F|w) = 0 for all mixed monomials w in x, y, z.

Part IV. Normal form of braids in $\text{Lie } P_5$

The goals of this research project are:

(i) to find an explicit expression for the coefficients of the mixed monomials in F, and

(ii) to relate them to the stuffle relations, so as to recover Furusho's result $\mathfrak{grt} \hookrightarrow \mathfrak{ds}$ and possibly even prove the conjectured isomorphism of these spaces.

Let d, v and u_1 be derivations of $K_4 \simeq \mathbb{Q}\langle x, y, z \rangle$ defined by

$$\begin{cases} d(x) = 0 \\ v(x) = 0 \\ u_1(x) = 0 \end{cases} \begin{cases} d(y) = [y, x] \\ v(y) = [y + x, z] \\ u_1(y) = 0 \end{cases} \begin{cases} d(z) = 0 \\ v(z) = 0 \\ u_1(z) = [y, z], \end{cases}$$

and for any $w \in \mathbb{Q}\langle x, y, z \rangle$, let $u_2(w) = wy$. Let u be the linear operator $u_1 + u_2$ on $\mathbb{Q}\langle x, y, z \rangle$.

Normalization theorem. Let $f \in \text{Lie}[x, y]$ and write $f = xf^x + yf^y$. Then

(i) $f^{y}(d, u) \cdot y = f(x, y).$ (ii) $f^{y}(d + v, u) \cdot y = F(x, y, z)$ This helps compute the coefficients (F|w) for mixed monomials w. Example. Consider the monomial yx^azx^b . Recall that

$$F(x, y, z) = f^y(d + v, u).$$

The words in d, u, v that can produce this monomial are exactly

$$d^{b} \cdot v \cdot d^{a} - d^{b-1}h \cdot ud^{a} + \sum_{i=0}^{a-1} d^{i}u \cdot d^{b}h \cdot d^{a-1-i} - \sum_{i=0}^{a} d^{i}u \cdot d^{b-1}h \cdot d^{a-i}.$$

Therefore since $F(x, y, z) = f^y(d + v, u)$, the coefficient $(F|yx^azx^b)$ is given by

$$(f^{y}(d+v,u)|d^{b} \cdot v \cdot d^{a}) + \sum_{i=0}^{a-1} (f^{y}(d+v,u)|d^{i}u \cdot d^{b}v \cdot d^{a-1-i}) - (f^{y}(d+v,u)|d^{b-1}v \cdot ud^{a}) - \sum_{i=0}^{a} (f^{y}(d+v,u)|d^{i}u \cdot d^{b-1}v \cdot d^{a-i}).$$

But for any monomial w(d, u, v), we have

$$\left(f^{y}(d+v,u)|w(d,u,v)\right) = \left(f^{y}(d,u)|w(d,u,d)\right),$$

so this is equal to

$$\begin{split} \left(f^{y}(d,u)|d^{a+b+1}\right) &+ \sum_{i=0}^{a-y1} \left(f^{y}(d,u)|d^{i}u \cdot d^{a+b-i}\right) \\ &- \left(f^{y}(d,u)|d^{b}ud^{a}\right) - \sum_{i=0}^{a} \left(f^{y}(d,u)|d^{i}u \cdot d^{a+b-i}\right) \\ &= \left(f^{y}(d,u)|d^{a+b+1}\right) - \left(f^{y}(d,u)|d^{b}ud^{a}\right) - \left(f^{y}(d,u)|d^{a}ud^{b}\right) \\ &= \left(f^{y}(x,y)|x^{a+b+1}\right) - \left(f^{y}(x,y)|x^{b}yx^{a}\right) - \left(f^{y}(x,y)|x^{a}yx^{b}\right) \\ &= \left(f(x,y)|yx^{a+b+1}\right) - \left(f(x,y)|yx^{b}yx^{a}\right) - \left(f(x,y)|yx^{a}yx^{b}\right). \end{split}$$

Thus the coefficient of $yx^a zx^b$ in F(x, y, z) is zero if and only if f satisfies

$$(f|yx^{b}yx^{a}) + (f|yx^{a}yx^{b}) - (f|yx^{a+b+1}) = 0.$$

Setting g(x, y) = f(x, -y), this means that

$$(g|yx^{b}yx^{a}) + (g|yx^{a}yx^{b}) + (g|yx^{a+b+1}) = 0,$$

which is exactly the stuffle relation st((a), (b)) for g.

This example shows how stuffles can arise naturally from normalizing elements of Lie P_5 . **Theorem.** Let $f \in \text{Lie}[x, y]$ and let F(x, y, z) be the normalization of $f(x_{12}, x_{51})$ in $\text{Lie } P_5$. Then (i) the coefficient of $yx^{a_1} \cdots yx^{a_r} zx^b$ in F is $st((b), (a_1, \ldots, a_r))$. (ii) the coefficient of $yx^{a_1} \cdots yx^{a_r} zx^{b_1} \cdots zx^{b_s}$ in F (with $s \leq r$) is equal to $st((b_s, \ldots, b_1), (a_1, \ldots, a_r))$ up to adding stuffles whose left-hand sequence is of length < s.

General rule. Let $A = a_1, \ldots, a_r$ and let $y_A = yx^{a_1} \ldots yx^{a_r}$. Then

$$(F|y_A \cdot zx^b) = st((b), (A))$$

$$(F|y_A \cdot zx^b zx^c) = st((c, b), (A)) - st((c), (A, b)) - st((c + b), (A))$$

$$(F|y_A \cdot zx^b zx^c zx^d) = st((d, c, b), (A)) - st((d + c, b), (A))$$

$$- st((d, c + b), (A)) + st((d + c + b), (A))$$

$$- st((d, c), (A, b)) + st((d + c), (A, b))$$

$$- st((d), (A, b, c)).$$

Corollary. If the mixed monomials in F(x, y, z) are all zero, then all the stuffle relations hold for f.

Thus our method recovers Furusho's result $\mathfrak{grt} \hookrightarrow \mathfrak{ds}$.

In order to prove that $\mathfrak{grt} \simeq \mathfrak{ds}$, we need to prove that the coefficients of all mixed monomials in F are sums of stuffles, or that they can be deduced from the special monomials in the theorem, in which the z's follow the y's. Ongoing...