A dimorphic description of the Grothendieck-Teichmüller Lie algebra

Leila Schneps

Higher structures emerging from renormalisation
Virtual Vienna
October 12-16, 2020

Outline

Part I. Multiple zeta values and the Drinfeld associator
Part II. The double shuffle Lie algebra $\mathfrak{d s}$ and the Grothendieck-Teichmüller Lie algebra $\mathfrak{g r t}$

Part III. A dimorphic re-definition of $\mathfrak{g r t}$
Part IV. Normal form of 5-strand braids

Part I: Multizeta values and the Drinfeld associator

For each sequence $\left(k_{1}, \ldots, k_{r}\right)$ of strictly positive integers, $k_{1} \geq 2$, the multiple zeta value is defined by the convergent series

$$
\zeta\left(k_{1}, \ldots, k_{r}\right)=\sum_{n_{1}>\cdots>n_{r}>0} \frac{1}{n_{1}^{k_{1}} \cdots n_{r}^{k_{r}}} .
$$

These real numbers have been studied since Euler (1775).
They form a \mathbb{Q}-algebra, the multizeta algebra \mathcal{Z}.

Two multiplications of multizeta values

1. Shuffle multiplication

Straightforward integration shows that

$$
\zeta\left(k_{1}, \ldots, k_{r}\right)=(-1)^{r} \int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n-1}} \frac{d t_{n}}{t_{n}-\epsilon_{n}} \cdots \frac{d t_{2}}{t_{2}-\epsilon_{2}} \frac{d t_{1}}{t_{1}-\epsilon_{1}}
$$

where

$$
\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=(\underbrace{0, \ldots, 0}_{k_{1}-1}, 1, \underbrace{0, \ldots, 0}_{k_{2}-1}, 1, \ldots, \underbrace{0, \ldots, 0}_{k_{r}-1}, 1) .
$$

The product of two simplices is a union of simplices, giving an expression for the product of two multizeta values as a sum of multizeta values. This is the shuffle product.

Example. We have

$$
\begin{aligned}
\zeta(2) & =\int_{0}^{1} \int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}} \frac{d t_{1}}{t_{1}} \\
\zeta(2,2) & =\int_{0}^{1} \int_{0}^{t_{1}} \int_{0}^{t_{2}} \int_{0}^{t_{3}} \frac{d t_{4}}{1-t_{4}} \frac{d t_{3}}{t_{3}} \frac{d t_{2}}{1-t_{2}} \frac{d t_{1}}{t_{1}} \\
\zeta(3,1) & =\int_{0}^{1} \int_{0}^{t_{1}} \int_{0}^{t_{2}} \int_{0}^{t_{3}} \frac{d t_{4}}{1-t_{4}} \frac{d t_{3}}{1-t_{3}} \frac{d t_{2}}{t_{2}} \frac{d t_{1}}{t_{1}}
\end{aligned}
$$

and

$$
\zeta(2)^{2}=2 \zeta(2,2)+4 \zeta(3,1)
$$

Convergent words in x, y

A convergent word $w \in \mathbb{Q}\langle x, y\rangle$ is a word $w=x v y$.
The reason for this notation is that it gives a bijection
\{tuples with $\left.k_{1} \geq 2\right\} \leftrightarrow\{$ convergent words $\}$

$$
\left(k_{1}, \ldots, k_{r}\right) \leftrightarrow x^{k_{1}-1} y \cdots x^{k_{r}-1} y .
$$

Definition. For two monomials $u, v \in \mathbb{Q}\langle x, y\rangle$, the shuffle product $\operatorname{sh}(u, v)$ is the set or formal sum of permutations of the letters of u and v where the letters of each word remain ordered.

Example. $\operatorname{sh}(y, x y)=y x y+2 x y y$.

We use the x, y-notation to define $\zeta(w)$ for any convergent word $w=$ $x^{k_{1}-1} y \cdot x^{k_{r}-1} y$ by setting

$$
\zeta\left(x^{k_{1}-1} y \cdots x^{k_{r}-1} y\right):=\zeta\left(k_{1}, \ldots, k_{r}\right) .
$$

We then extend the definition of $\zeta(w)$ to all words w by writing $w=y^{a} u x^{b}$ with u convergent and setting

$$
\zeta(w):=\sum_{r=0}^{a} \sum_{s=0}^{b}(-1)^{r+s} \zeta\left(\operatorname{sh}\left(y^{r}, y^{a-r} u x^{b-s}, x^{s}\right)\right) .
$$

Theorem. For all words u, v in x, y, we have

$$
\zeta(u) \zeta(v)=\zeta(\operatorname{sh}(u, v)) .
$$

In particular, this multiplication law shows that the \mathbb{Q}-vector space \mathcal{Z} has a \mathbb{Q}-algebra structure.

2. Stuffle multiplication

The product of two series over ordered indices can be expressed as a sum of series over ordered indices. This is the stuffle product of multizeta values.

Example. We have

$$
\begin{aligned}
\zeta(2)^{2} & =\left(\sum_{n>0} \frac{1}{n^{2}}\right)\left(\sum_{m>0} \frac{1}{m^{2}}\right) \\
& =\sum_{n>m>0} \frac{1}{n^{2} m^{2}}+\sum_{m>n>0} \frac{1}{n^{2} m^{2}}+\sum_{n=m>0} \frac{1}{n^{4}} \\
& =2 \zeta(2,2)+\zeta(4) .
\end{aligned}
$$

The x, y notation for stuffle

We write

$$
\text { st }\left(\left(k_{1}, \ldots, k_{r}\right),\left(l_{1}, \ldots, l_{s}\right)\right)
$$

for the formal sum of sequences that come from this way of calculating the product of $\zeta\left(k_{1}, \ldots, k_{r}\right) \zeta\left(l_{1}, \ldots, l_{s}\right)$. For example

$$
\text { st }((2),(3))=(2,3)+(3,2)+(5) .
$$

We translate this operation on sequences over to convergent words.
Letting $y_{i}=x^{i-1} y$, we write a convergent word $w=x^{k_{1}-1} y \cdots x^{k_{r}-1} y$ as $w=y_{k_{1}} \cdots y_{k_{r}}$, and define the stuffle product of convergent words $s t(u, v)$ as above. For example

$$
s t\left(x y, x^{2} y\right)=s t\left(y_{2}, y_{3}\right)=y_{2} y_{3}+y_{3} y_{2}+y_{5} .
$$

Thus

$$
\zeta(2) \zeta(3)=\zeta(2,3)+\zeta(3,2)+\zeta(5) .
$$

The Drinfeld associator

Definition. The Drinfeld associator is the power series given by

$$
\Phi_{K Z}(x, y)=1+\sum_{w \in \mathbb{Q}\langle x, y\rangle}(-1)^{d_{w}} \zeta(w) w
$$

where d_{w} is the number of y 's in the word w. Let $\Phi_{K Z}^{*}$ denote the product

$$
\exp \left(\sum_{n \geq 2} \frac{(-1)^{n-1}}{n} \zeta(n) y_{1}^{n}\right) \cdot \pi_{y}\left(\Phi_{K Z}\right)
$$

where π_{y} forgets all words ending in x, and rewrites words ending in y in the letters y_{i}.

Theorem. For all words w in the letters y_{i}, set $\zeta^{*}(w)=\left(\Phi_{K Z}^{*} \mid w\right)$. Then (i) For all convergent words w, we have $\zeta^{*}(w)=\zeta(w)$.
(ii) For every pair of words u, v in the y_{i}, we have

$$
\zeta^{*}(u) \zeta^{*}(v)=\zeta^{*}(s t(u, v))
$$

Since non-convergent words in the y_{i} are exactly those starting with $y=y_{1}$, assigning a value $\zeta^{*}(w)$ to these words exactly means giving a regularized value to the divergent quantities $\zeta\left(1, k_{2}, \ldots, k_{r}\right)$.

The shuffle and stuffle relations between multizetas can be encoded directly as properties of the Drinfeld associator.

Shuffle relations: The shuffle relations satisfied by the $\zeta(w)$ are encoded in the property

$$
\begin{equation*}
\Delta\left(\Phi_{K Z}\right)=\Phi_{K Z} \otimes \Phi_{K Z}, \tag{1}
\end{equation*}
$$

where $\Delta(x)=x \otimes 1+1 \otimes x$ and $\Delta(y)=y \otimes 1+1 \otimes y$ is the standard coproduct on the Hopf algebra $\mathbb{Q}\langle\langle x, y\rangle\rangle$.

Stuffle relations: The stuffle relations satisfied by the $\zeta^{*}(w)$ are encoded in the condition

$$
\begin{equation*}
\Delta_{*}\left(\Phi_{*}\right)=\Phi_{*} \otimes \Phi_{*}, \tag{2}
\end{equation*}
$$

where Δ_{*} be the coproduct on $\mathbb{Q}\left\langle\left\langle y_{1}, y_{2}, \ldots\right\rangle\right\rangle$ defined by

$$
\Delta_{*}\left(y_{i}\right)=\sum_{k+l=i} y_{k} \otimes y_{l} .
$$

Part II

The Grothendieck-Teichmüller and double shuffle Lie algebras

Definition of the n-strand braid Lie algebra. Let Lie P_{n} be the Lie algebra given by:
Generators: $x_{i j}, 1 \leq i, j \leq n$ with $x_{i j}=x_{j i}, x_{i i}=0$
Relations: $\left[x_{i j}, x_{i j}+x_{i k}+x_{j k}\right]=0$ for sets $|\{i, j, k\}|=3 \quad \sum_{j \neq i} x_{i j}=0$

$$
\left[x_{i j}, x_{k l}\right]=0 \text { if }\{i, j\} \cap\{k, l\}=\emptyset .
$$

In particular, Lie P_{4} is free on x_{12}, x_{23} and Lie P_{5} can be generated by $x_{12}, x_{23}, x_{34}, x_{45}, x_{51}$ or by $x_{12}, x_{23}, x_{14}, x_{24}, x_{34}$.

Theorem. [Drinfel'd] The Drinfeld associator also satisfies the associator relations

$$
\begin{equation*}
\Phi_{K Z}(x, y) \Phi_{K Z}(y, x)=1 \tag{I}
\end{equation*}
$$

(II) $e^{\pi i x} \Phi_{K Z}(y, x) e^{\pi i y} \Phi_{K Z}(z, y) e^{i \pi z} \Phi_{K Z}(x, z)=1 \quad$ with $x+y+z=0$,
(III) The 5-cycle relation
$\Phi_{K Z}\left(x_{12}, x_{23}\right) \Phi_{K Z}\left(x_{34}, x_{45}\right) \Phi_{K Z}\left(x_{51}, x_{12}\right) \Phi_{K Z}\left(x_{23}, x_{34}\right) \Phi_{K Z}\left(x_{45}, x_{51}\right)=1$,
where the $x_{i j}$ generate Lie P_{5}.

Lie algebras associated to $\Phi_{K Z}$

Definition. For any ring R, let $D S(R)$ denote the set of double shuffle power series in $R\langle\langle x, y\rangle\rangle$ that are group-like, have no linear term and satisfy the double shuffle relations.

Let $D S_{0}(R)$ denote the subset (pro-unipotent group) of those having no quadratic terms. Then $\Phi_{K Z} \in D S(\mathcal{Z})$, and if $\bar{\Phi}_{K Z}$ denotes the power series $\Phi_{K Z}$ with coefficients reduced modulo $\zeta(2)$ then

$$
\bar{\Phi}_{K Z} \in D S_{0}(\mathcal{Z} /\langle\zeta(2)\rangle) .
$$

Definition. For any ring R, an associator is a group-like power series $\Phi(x, y) \in R\langle\langle x, y\rangle\rangle$ with no linear term which satisfies the associator relations (I), (II), (III) with $i \pi$ replaced by $\mu / 2$ for some $\mu \in R$.

Let $G R T_{0}(R)$ denote the set (pro-unipotent group) of associators with no quadratic term. The power series $\Phi_{K Z}$ is an associator and for the reduced power series we have

$$
\overline{\Phi_{K Z}} \in G R T_{0}(\mathcal{Z} /\langle\zeta(2)\rangle .
$$

Definition. Let $\mathfrak{d s}=\mathfrak{d s}(\mathbb{Q})$ denote the Lie algebra consisting of polynomials $f(x, y) \in \mathbb{Q}\langle x, y\rangle$ such that
(i) f is of degree ≥ 3,
(ii) f is Lie-like for Δ, i.e. $f \in \operatorname{Lie}[x, y]$, and
(iii) f^{*} is Lie-like for Δ^{*}, where f^{*} is obtained from f by the formula

$$
f^{*}=\pi_{y}(f)+\sum_{n \geq 2} \frac{(-1)^{n-1}}{n} y_{1}^{n} .
$$

Definition. Let $\mathfrak{g r t}=\mathfrak{g r t}(\mathbb{Q})$ denote the Lie algebra consisting of polynomials $f(x, y) \in \mathbb{Q}\langle x, y\rangle$ such that
(i) f is of degree ≥ 3,
(ii) $f \in \operatorname{Lie}[x, y]$
(iii) $f\left(x_{12}, x_{23}\right)+f\left(x_{23}, x_{34}\right)+f\left(x_{34}, x_{45}\right)+f\left(x_{45}, x_{51}\right)+f\left(x_{51}, x_{12}\right)=0$, where the $x_{i j}$ generate Lie P_{5}.

Remark. Clearly $\mathfrak{d s}$ is the Lie version of $D S_{0}$. By a theorem of H . Furusho, these properties automatically imply that if $x+y+z=0$ then

$$
f(x, y)+f(y, x)=f(x, y)+f(y, z)+f(z, x)=0 .
$$

So this definition really is the graded Lie algebra associated to $G R T_{0}$.

The Lie bracket: Every $f \in \operatorname{Lie}[x, y]$ yields a derivation D_{f} of $\operatorname{Lie}[x, y]$ defined by

$$
D_{f}(x)=0, \quad D_{f}(y)=[y, f(x, y)] .
$$

We write $\operatorname{Der}^{*} \operatorname{Lie}[x, y]$ for the derivations of this type. We can put a different Lie bracket on the vector space Lie $[x, y]$, called the Poisson or Ihara bracket via

$$
\{f, g\}=[f, g]+D_{f}(g)-D_{g}(f)
$$

which corresponds to bracketing derivations:

$$
\left[D_{f}, D_{g}\right]=D_{\{f, g\}}
$$

* Ihara: $\mathfrak{g r t}$ is a graded Lie algebra under $\{$,$\} (so G R T_{0}$ is a pro-unipotent group).
* Racinet,Ecalle: $\mathfrak{d s}$ is a graded Lie algebra under $\{$,$\} (so D S_{0}$ is a prounipotent group).

Theorem. (Furusho) There is an injection of Lie algebras

$$
\begin{aligned}
\mathfrak{g r t} & \hookrightarrow \mathfrak{d s} \\
f(x, y) & \mapsto f(x,-y) .
\end{aligned}
$$

Part III. A dimorphic definition of $\mathfrak{g r t}$

Theorem. Let $\operatorname{Lie}_{n} P_{5}$ be the graded part of Lie P_{5} of degree n, and let K_{4} denote the kernel of the morphism that "erases the 4th strand". Then
(i) $K_{4}:=\left\langle x_{14}, x_{24}, x_{34}, x_{45}\right\rangle \simeq\left\langle x_{24}, x_{34}, x_{45}\right\rangle$ is a free Lie algebra on 3 generators (since $x_{14}+x_{24}+x_{34}+x_{45}=0$).
(ii) We have the semi-direct product decomposition

$$
\text { Lie } P_{5} \simeq\left\langle x_{12}, x_{23}\right\rangle \rtimes K_{4} .
$$

(iii) For fixed $n \geq 1$, we have the direct sum decomposition

$$
\operatorname{Lie}_{n} P_{5} \simeq\left\langle x_{12}, x_{23}\right\rangle_{n} \oplus\left(K_{4}\right)_{n} .
$$

This theorem implies that if $f \in \operatorname{Lie}_{n} P_{5}$, then f can be written uniquely as

$$
f=f_{0}\left(x_{12}, x_{23}\right)+F
$$

where $F \in K_{4}$. We call F the normalization of f with respect to the 4th strand.

We want to consider the normalization of elements of Lie P_{5} of the form $f\left(x_{12}, x_{51}\right)$ where $f(x, y) \in \operatorname{Lie}[x, y]$.

We use the two following facts:
(1) The relation $x_{51}=x_{23}+x_{24}+x_{34}$ in Lie P_{5}
(2) The fact that if $a, b, c \in \operatorname{Lie} P_{5}$ and $[a, c]=[b, c]=0$, then

$$
f(a, b+c)=f(a, b) .
$$

By (1), we have

$$
f\left(x_{12}, x_{51}\right) \equiv f\left(x_{12}, x_{23}\right) \bmod K_{4} .
$$

Therefore for $f\left(x_{12}, x_{51}\right)$, we have $f_{0}\left(x_{12}, x_{23}\right)=f\left(x_{12}, x_{23}\right)$, so the normal form of $f\left(x_{12}, x_{51}\right)$ in Lie P_{5} is

$$
f\left(x_{12}, x_{51}\right)=f\left(x_{12}, x_{23}\right)+F
$$

with $F \in K_{4}$.

Recall that an element $f \in \mathfrak{g r t}$ is an $f \in \operatorname{Lie}[x, y]$ that satisfies the pentagon relation

$$
f\left(x_{51}, x_{12}\right)+f\left(x_{12}, x_{23}\right)+f\left(x_{23}, x_{34}\right)+f\left(x_{34}, x_{45}\right)+f\left(x_{45}, x_{51}\right)=0 .
$$

Since it also satisfies $f(x, y)+f(y, x)=0$, we can write this as

$$
\begin{aligned}
f\left(x_{12}, x_{51}\right) & =f\left(x_{12}, x_{23}\right)+f\left(x_{23}, x_{34}\right)+f\left(x_{34}, x_{45}\right)+f\left(x_{45}, x_{51}\right) \\
& =f\left(x_{12}, x_{23}\right)+f\left(x_{23}-c, x_{34}\right)+f\left(x_{34}, x_{45}\right)+f\left(x_{45}, x_{23}+x_{24}+x_{34}\right) \\
& =f\left(x_{12}, x_{23}\right)+f\left(-x_{24}-x_{34}, x_{34}\right)+f\left(x_{34}, x_{45}\right)+f\left(x_{45}, x_{24}+x_{34}\right)
\end{aligned}
$$

where $c=x_{23}+x_{24}+x_{34}$ commutes with x_{23} and x_{34}.
This is nothing other than the normalization of $f\left(x_{12}, x_{51}\right)$ with respect to the 4th strand.

So an equivalent definition of $\mathfrak{g r t}$ is the space of $f \in \operatorname{Lie}[x, y]$ such that the normalization F of $f\left(x_{12}, x_{51}\right)$ is given by

$$
F=f\left(-x_{24}-x_{34}, x_{34}\right)+f\left(x_{34}, x_{45}\right)+f\left(x_{45}, x_{24}+x_{34}\right) .
$$

Set

$$
\left\{\begin{array}{l}
x:=x_{45} \\
y:=x_{24}+x_{34} \\
z:=x_{34}
\end{array}\right.
$$

and write $K_{4}=\langle x, y, z\rangle$. Then this re-definition of $\mathfrak{g r t}$ can be expressed as follows: the space of $f \in \operatorname{Lie}[x, y]$ such that the normalization F of $f\left(x_{12}, x_{51}\right)$ is of the form

$$
F(x, y, z)=f(-y, z)+f(z, x)+f(x, y)
$$

Lemma. Let $f \in \operatorname{Lie}[x, y]$ and let F be the normalization of $f\left(x_{12}, x_{51}\right) \in$ Lie P_{5}. Then

$$
\left\{\begin{array}{l}
F(x, y, 0)=f(x, y) \\
F(x, 0, z)=f(z, x) \\
F(0, y, z)=f(-y, z)
\end{array}\right.
$$

So the re-definition of $\mathfrak{g r t}$ can be expressed as follows: the space of $f \in \operatorname{Lie}[x, y]$ whose normalization F has no monomials in all three variables, i.e. satisfies

$$
F(x, y, z)=F(x, y, 0)+F(x, 0, z)+F(0, y, z) .
$$

The coefficients of F are all linear combinations of the coefficients of f. Therefore we have:

Dimorphic definition of $\mathfrak{g r t}$: the space of polynomials $f \in \mathbb{Q}\langle x, y\rangle$ whose coefficients satisfy two families of linear relations:
(i) the shuffle relations (so $f \in \operatorname{Lie}[x, y]$),
(ii) the relations $(F \mid w)=0$ for all mixed monomials w in x, y, z.

Part IV. Normal form of braids in Lie P_{5}

The goals of this research project are:
(i) to find an explicit expression for the coefficients of the mixed monomials in F, and
(ii) to relate them to the stuffle relations, so as to recover Furusho's result $\mathfrak{g r t} \hookrightarrow \mathfrak{d s}$ and possibly even prove the conjectured isomorphism of these spaces.

Let d, v and u_{1} be derivations of $K_{4} \simeq \mathbb{Q}\langle x, y, z\rangle$ defined by

$$
\left\{\begin{array} { l }
{ d (x) = 0 } \\
{ v (x) = 0 } \\
{ u _ { 1 } (x) = 0 }
\end{array} \quad \left\{\begin{array} { l }
{ d (y) = [y , x] } \\
{ v (y) = [y + x , z] } \\
{ u _ { 1 } (y) = 0 }
\end{array} \quad \left\{\begin{array}{l}
d(z)=0 \\
v(z)=0 \\
u_{1}(z)=[y, z]
\end{array}\right.\right.\right.
$$

and for any $w \in \mathbb{Q}\langle x, y, z\rangle$, let $u_{2}(w)=w y$. Let u be the linear operator $u_{1}+u_{2}$ on $\mathbb{Q}\langle x, y, z\rangle$.

Normalization theorem. Let $f \in \operatorname{Lie}[x, y]$ and write $f=x f^{x}+y f^{y}$. Then
(i) $f^{y}(d, u) \cdot y=f(x, y)$.
(ii) $f^{y}(d+v, u) \cdot y=F(x, y, z)$

This helps compute the coefficients $(F \mid w)$ for mixed monomials w. Example. Consider the monomial $y x^{a} z x^{b}$. Recall that

$$
F(x, y, z)=f^{y}(d+v, u)
$$

The words in d, u, v that can produce this monomial are exactly

$$
d^{b} \cdot v \cdot d^{a}-d^{b-1} h \cdot u d^{a}+\sum_{i=0}^{a-1} d^{i} u \cdot d^{b} h \cdot d^{a-1-i}-\sum_{i=0}^{a} d^{i} u \cdot d^{b-1} h \cdot d^{a-i}
$$

Therefore since $F(x, y, z)=f^{y}(d+v, u)$, the coefficient $\left(F \mid y x^{a} z x^{b}\right)$ is given by

$$
\begin{aligned}
& \left(f^{y}(d+v, u) \mid d^{b} \cdot v \cdot d^{a}\right)+\sum_{i=0}^{a-1}\left(f^{y}(d+v, u) \mid d^{i} u \cdot d^{b} v \cdot d^{a-1-i}\right) \\
& \quad-\left(f^{y}(d+v, u) \mid d^{b-1} v \cdot u d^{a}\right)-\sum_{i=0}^{a}\left(f^{y}(d+v, u) \mid d^{i} u \cdot d^{b-1} v \cdot d^{a-i}\right)
\end{aligned}
$$

But for any monomial $w(d, u, v)$, we have

$$
\left(f^{y}(d+v, u) \mid w(d, u, v)\right)=\left(f^{y}(d, u) \mid w(d, u, d)\right)
$$

so this is equal to

$$
\begin{aligned}
& \left(f^{y}(d, u) \mid d^{a+b+1}\right)+\sum_{i=0}^{a-y 1}\left(f^{y}(d, u) \mid d^{i} u \cdot d^{a+b-i}\right) \\
& \quad-\left(f^{y}(d, u) \mid d^{b} u d^{a}\right)-\sum_{i=0}^{a}\left(f^{y}(d, u) \mid d^{i} u \cdot d^{a+b-i}\right) \\
& =\left(f^{y}(d, u) \mid d^{a+b+1}\right)-\left(f^{y}(d, u) \mid d^{b} u d^{a}\right)-\left(f^{y}(d, u) \mid d^{a} u d^{b}\right) \\
& =\left(f^{y}(x, y) \mid x^{a+b+1}\right)-\left(f^{y}(x, y) \mid x^{b} y x^{a}\right)-\left(f^{y}(x, y) \mid x^{a} y x^{b}\right) \\
& =\left(f(x, y) \mid y x^{a+b+1}\right)-\left(f(x, y) \mid y x^{b} y x^{a}\right)-\left(f(x, y) \mid y x^{a} y x^{b}\right) .
\end{aligned}
$$

Thus the coefficient of $y x^{a} z x^{b}$ in $F(x, y, z)$ is zero if and only if f satisfies

$$
\left(f \mid y x^{b} y x^{a}\right)+\left(f \mid y x^{a} y x^{b}\right)-\left(f \mid y x^{a+b+1}\right)=0 .
$$

Setting $g(x, y)=f(x,-y)$, this means that

$$
\left(g \mid y x^{b} y x^{a}\right)+\left(g \mid y x^{a} y x^{b}\right)+\left(g \mid y x^{a+b+1}\right)=0,
$$

which is exactly the stuffle relation $\operatorname{st}((a),(b))$ for g.
This example shows how stuffles can arise naturally from normalizing elements of Lie P_{5}.

Theorem. Let $f \in \operatorname{Lie}[x, y]$ and let $F(x, y, z)$ be the normalization of $f\left(x_{12}, x_{51}\right)$ in Lie P_{5}. Then
(i) the coefficient of $y x^{a_{1}} \cdots y x^{a_{r}} z x^{b}$ in F is st $\left((b),\left(a_{1}, \ldots, a_{r}\right)\right)$.
(ii) the coefficient of $y x^{a_{1}} \cdots y x^{a_{r}} z x^{b_{1}} \cdots z x^{b_{s}}$ in F (with $s \leq r$) is equal to st $\left(\left(b_{s}, \ldots, b_{1}\right),\left(a_{1}, \ldots, a_{r}\right)\right)$ up to adding stuffles whose left-hand sequence is of length $<s$.
General rule. Let $A=a_{1}, \ldots, a_{r}$ and let $y_{A}=y x^{a_{1}} \ldots y x^{a_{r}}$. Then

$$
\begin{aligned}
\left(F \mid y_{A} \cdot z x^{b}\right)= & \operatorname{st}((b),(A)) \\
\left(F \mid y_{A} \cdot z x^{b} z x^{c}\right)= & \operatorname{st}((c, b),(A))-\operatorname{st}((c),(A, b))-s t((c+b),(A)) \\
\left(F \mid y_{A} \cdot z x^{b} z x^{c} z x^{d}\right)= & \operatorname{st}((d, c, b),(A))-\operatorname{st}((d+c, b),(A)) \\
& -\operatorname{st}((d, c+b),(A))+s t((d+c+b),(A)) \\
& -\operatorname{st}((d, c),(A, b))+\operatorname{st}((d+c),(A, b)) \\
& -\operatorname{st}((d),(A, b, c)) .
\end{aligned}
$$

Corollary. If the mixed monomials in $F(x, y, z)$ are all zero, then all the stuffle relations hold for f.

Thus our method recovers Furusho's result $\mathfrak{g r t} \hookrightarrow \mathfrak{d s}$.
In order to prove that $\mathfrak{g r t} \simeq \mathfrak{d s}$, we need to prove that the coefficients of all mixed monomials in F are sums of stuffles, or that they can be deduced from the special monomials in the theorem, in which the z 's follow the y 's. Ongoing...

